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The balance equation for the energy in moderately coupled two-temperature plasmas, in the presence of an
external radiation field, is derived and analyzed. The analysis is based on the Singwi-Tosi-Land-Sjolander
closure assumption. The different terms in the derived equation are identified as the rate of collisional energy
absorption from the external fielghverse bremsstrahlujgand the rate of energy transfer between the elec-
trons and the ions in the presence of the radiation fiedthxation. It is shown how these terms, which have
a structurally similar appearance, reduce to known expressions for relaxation and inverse bremsstrahlung in the
appropriate limits. It is found that, relative to the known expressions, electron-ion correlation tends to enhance
the rates of relaxation and of the inverse bremsstrahlung process.
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I. INTRODUCTION In the present work we use the STLS approach to inves-
) . tigate the energy transfer processes in moderately coupled
The theoretical framework for the analysis of strongly piasmas; close to quasithermal equilibrium with different
coupled plasmas is not yet fully developed. In particular it iSsemperatures for the electrons and the ions. The treatment
not clear what is the minimum approximation schefbe-  jncludes an oscillating electric field which represents a long-
yond the random phase and Born approximafiomsich is  avelength radiation field. The balance equation for the ki-
sufficient for the description of the effect of strong ion-ion petic energy is derived from the second velocity moment of
and electron-ion coupling on relaxation and transport prothe lowest order equation in the quantum BBGKY hierarchy
cesses in the plasma, even without an external radiation fieldf equations. The derived equation includes a term which is
[1,2]. Some understanding of this problem may be obtaineddentified as the rate of collisional energy absorption from
by considering mild cases where the ion-electron coupling ishe external field(inverse bremsstrahluijpgand two addi-
not so strong. tional terms which are identified as the rate of energy transfer
When the typical relaxation times of electrons and ionsbetween the electrons and ions with or without the radiation
are much shorter than typical electron-ion relaxation timesield. This is different from existing workgwith weak or
[3], one may assume that each specie is close to thermstrong coupling which specialize either to the inverse
equilibrium, with different temperatures for the electrons andoremsstrahlung proce$s0-21 (by considering, right from
the ions. In this case, one may proceed along the line of theéhe beginning, only the case of infinite ion-to-electron mass
Singwi-Tosi-Land-Sjolande(STLS) approach for one{4]  ratio) or to temperature relaxatiqi,22—24 (by considering
and multiple-[5] component plasmas. This approach trun-systems without an external figldn the present derivation,
cates the Born-Bogoliubov-Green-Kirkwood-Yvon it is found that both inverse bremsstrahlung and relaxation
(BBGKY) hierarchy of equatiop{6,7] fOE Ehg rpultiple— rates may be written as overlap integrals of the electron and
particle distribution functionsf(r,p,t), f(r,p,r".p",t),...  jon spectra ik, space. This corresponds to a second-order
using the ansat(r,p,r",p",t) =f(r,p,Of(r",p".)g("=1"))  perturbation expansion in the electron-ion interaction poten-
(whereg is the equilibrium pair distribution functignand  tjal, however with the interaction “dressed” by the local field
then expands the kinetic equation around uniform therma¢orrection.
equilibriumf %(5). The result is that the linear response func- |t is found that, in this scheme, the correlation induces
tions are changed from the functions in the absence of cotwo types of corrections in the formulas for the rates of en-
relation [i.e., with f(F,p,F",p’,t)=f(F,p,0f("",p’,t)] by @ ergy transfer and inverse bremsstrahlung: the electron-
local field correction[8], which is a functional of the pair electron and ion-ion dynamic local field correction which
distribution function g(|F-r’[). The fluctuation-dissipation dresses the electron’s and ion’s response funciiér%, and
theorem supplies another relation between the response funa-static local field correction which dresses the electron-ion
tions and the pair correlation function, leading to a closed setoupling potential.
of equations for the self-consistent evaluation of the linear The standard formulas for the process of temperature re-
response functions and the pair distribution function. Thidaxation [22,23 (without a radiation fielgl and collisional
approach was successful in a variety of applications, e.g., iabsorption[11,10 from the radiation field, as well as some
describing the dielectric function of the interacting electronmore recent result§l,16,17,21,2% are obtained by taking
liquid and of a two-component electron-hole liquid, and inthe proper limits and utilizing the properties of electron and
getting excellent agreement of the ground state energy wition spectra to perform the integration.
numerical experiments over the whole range of metallic den- The plan of the paper is as follows: In Sec. Il the basic
sities(see, for example, Ref9)). equations are presented and the balance equation for the ki-
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netic energy is derived. In Sec. Ill, we use the quasilinear f8(F,p,r",p’,t) = 47, p, O FA(7,p" ) g*B(F = 1"). (2
approximation to write the rate of energy transfer from ra- . _ o . .
diation to the electrons and ions and between the electrorf§Ssumption(2) with the identification ofg with the pair
and ions, in the balance equation, in terms of overlap intedistribution function in the equilibrium state,25 reduces
grals of the electron and ion spectrakine space. The term the hierarchy of equations to a set of coupled kinetic equa-

responsible for the inverse bremsstrahlung process is anH_ons.for the smgle-parycle W|g_ner_funct|or_[§ﬂ. In the
lyzed in Sec. IV, and Sec. V analyzes the terms responsibl‘él""ss'Cal case one obtains the kinetic equation

for energy transfer between the electrons and ions in the oo 9
absence of external radiation. An evaluation of the correction —f*(r,p,t) + — - — f*(F,p,t) + —=f*(r,p,t) -m*a*=0,
factor due to electron-ion correlations is given in Sec. VI, m= 4 ap

and Sec. VIl is devoted to a summary and discussion. 3

where the accelerations are given by
II. THE KINETIC AND TRANSPORT EQUATIONS

XA — (9 a gext =

In this section, we will develop an expression for the™ & =~ -4 ¢
power P absorbed by the electrons or the ions in a plasma,
by applying the STLS closure assumption to the basic equa- _J |:nuz(r?l,t)guza(r?_ Fr)ivaa(f’_ )
tions of motion. The expression obtained will be bilinear in ar
the particle densities, and will thus allow the introduction of P
density correlators in the following section. An external os- +nY(F" g (F = ) —VU(F - F’)]d3F’, (4)
cillating electric field driving the plasma will be included, ar
representing an applied laser. Using Wigner functions will
allow us to present quantum-mechanical results and classic
results simultaneously.

The N-body Schrédinger equation for a plasma of inter-
acting particles-N® electrons andN' ions in a volume
V—may be transformegb,7] to a hierarchy of equations for
the Wigner functiong=*(f',p,t), F*4(f,p,i",p’ ,1),... where p ) Fids
a, B denote either electrons or ions. It is convenient here to —f4r,p,t) = f dEP (- i g fe(F, ,;,t)g—;] (5)
modify the normalization of the Wigner functions used in ap (2m)

Ref. [6] by defining f(F,p,t)=N“2m ) 3F4r,p,1),
fB(F,B,1",p’ , 1) =NNP(27 ) "®FA(F,p," ,p’,t),... Many
of the equations below are then unchanged in the classical - ¢ . i N R R
limit #—0 and can be understood as representing both thef'a_r»‘ﬁ o0 5 ¢ ”'Eﬁf’t - ¢ r‘aﬁf’t ,
guantum casgwheref*(r, p,t) are the Wigner functiojsand
the classical case, witff(f",p,t) denoting phase-space dis-
tribution functions. The expectation values of the particle g.i_)vaﬁ(r*_r*') 0 E{V“"(H }hg—r*’) (6)
density, charge current, and kinetic energy at a pdianhd ar fi 2
1 -
— VB F = Zhe-T
ol

timet are thus
in Egs.(3) and(4), where it is clear that taking— O repro-
duces the classical results.

R B B The above approach of displaying the more transparent
Frn=( L) <[ Lo e,

> =

\é\1ith a=e, i and y=i, e, respectively, an&/*#(r—r") denot-
ing the different interparticle interaction potential8 is
equal to eithew or ). The quantum-mechanical form of the
kinetic equation is obtained by applying the Fourier trans-
form

and making the replacements

n*(r,t) =(n®) = J f(r,p,t)d%p,

classical results, and then stating whenever necessary the re-
placement needed in order to generate the quantum-
mechanical results, will be used throughout the rest of this

< 02 > p? paper.
k*(r,n={n“s— :f ——f4(r, B, 1) dp. (1) The Hartree approximation is recovered here by ignoring
2m 2m correlations(i.e., taking g®=1), which gives the Vlasov

R equation for a two-component plasii26] (the extension to
The time evolution of «(r',t),k%(r,t) is affected by correla- a many-component plasma, containing several species of
tions. In order to examine this effect, we shall apply one ofions, is obvious The present notation allows us to consider
the simplest known approaches which goes beyond the Haboth Coulomb interactions withv*A(F—r")=q*q?/|r-"|,
tree (random phaseapproximation: the hierarchy of equa- and partially ionized plasmas with electron-ion interactions
tions which connects the single-particle distributions to therepresented by pseudopotentials and ion-ion interactions af-

multiparticle distributions is truncated by assumidgs,25 fected by the repulsive cores.
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Taking the first and second velocity moments of E3),
and averaging over the volumé one gets the following
equations for the momentum and energy:

>

p ?d

m*adt

3—)

J - dsr
—J ) =g f(r,p,t)dp—
Py H=q (r,p,t) Py

qa R . _ dSrT’
= EeX t AN t
m“J ‘(r,)qn(r,)v

qa 37

- d°r
+ Eef‘f,a"t aa"t_ 7
maf (r,)qn(r,)v (7)
and
a d P2 ﬁd3r*>
—K(t)=— fo(r,p,t)dPp—
at ® at(f 2m® (F.p.Y Py
> . > ff - ? > dBF
= | [E¥(r,t) + E*4(r )] -J“(r,t)v- (8)
Here Eefa(f 1) is the effective field,
Ea(7,t) = - V(i) 9

where the effective potentiah®™*(f,t) can be written as

arateqr,) = [ fer -

+W(F = )n"(F,1)}d%" (10)

in terms of an effective pair interactiol*() defined by

VA7) = gD VVE(). (1)
Equations (7) and (8) apply both to the classical and
quantum-mechanical cases. Formally, the macroscopic equ
tion (7) looks like Newton’s equation for the fluid velocity
ue, i.e., (8l a)UF,t)=(q*/m*)ET(F 1), and Eq.(8) tells

us that the change in the energy of téluid equals to the
work performed by the external field and the effective field
on thea specie(i.e., the ohmic dissipation
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a2 @

d —EZsin(2wot)

2(l)om

(3

J
—Ke(t) =
AU

d3k
(2m)?®

qa N 1Jt
+—E t)—| d

s ocOS(wo)V a7
X (=)Wl (nn"(7)

1( d%

= \Ipﬁ‘“
V) 2n)3

k

O S0

JL[ K e

V) (2m)?3 K

(43

-k

ng(t)%n (t) (12)

(the  effective  pair potential is  here ‘PEB
aB

:(k/kz)fgk_k,k’vgf;d3k’/(277)3, and depends only on the
magnitudek ). The first term on the right-hand side is the
direct response of the specie to the external field, the sec-
ond term represents absorption from the external fieé,
the inverse bremsstrahlung procgsthe third term is the
change in potential energy of thespecie, and the last term
represents the transport of energy betweendlspecie and
the v specie(relaxation. Moving the potential energy term
to the right-hand side of the equation, using its symmetry one
finds that the rate of change of the total energy of the
specie is

[

~ qa2 N*
2wgm® V

J
a—
at

P (277)3‘I’|2 n (1) n_lz(t))

a

EZsin(2wot)

qa - 1 t d3|2 AN a
+ ﬁEocos(wot)\—/J‘_w drf W(_ k)W (Dn’ (1)

1( o

= P
v) (2n)®

k

J
ng(t)ﬁn_ﬁ(t) . (13
Note that this expression for the power, which is bilinear in
the densities, follows directly from the STLS closure ansatz.
No linearization approximation is needed.

IIl. THE QUASILINEAR APPROXIMATION FOR THE
ENERGY EQUATION

It is convenient at this point to specialize to the case of a

uniform monochromatic external field, representing a long-

wavelength laser: E(F,t)=E,coswgt  (with adiabatic
switching on fromt— —«). The integrals involving the ex-
ternal field in Eqs(7) and(8) can then be preformed, yield-

ing N¢ andJe, respectively. Substituting for the latter, trans-
forming to k space (with fg=fe®f()d% and f(F)

= [k 7T dBk/ (2)3, and using continuityi.e., the lowest ve-
locity moment of the kinetic equatioi3), q“(a/at)ns(t)
+ilz-fs(t):0] gives the rate of change of the kinetic energy
of the « specie as

In the quasilinear approximatiof26], one assumes that
the two components of the plasma, electrons, and ions can be
considered separately, with their effects on each other treated
as a small perturbation around their thermodynamic equilib-
rium stateqRef. [32] shows that for some purposes this is a
good approximation even at the relatively high densities of
liquid metals, provided that the electron-ion interaction is
represented by an appropriate pseudopotentisding (- --)

to denote averaging over the thermodynamic ensemble, we
will thus approximate the bilinear correlators in E3) by
expressing them in terms of linear susceptibilities. For ex-
ample,
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(A4 = (E(DN" (D) + (2™ (D7), (14

where the induced perturbationfd‘“(r) and the inducing
perturbationng are linearly related to each othét zeroth

order, the fluctuations of the specie and the specie are of
course uncorrelated

PHYSICAL REVIEW E 69, 066407(2004

XK, )
1 - (K, ) Y (K, )

(19

ay
Vk

> DK,
X“(k,w)=( : “”)

and so the corrections due to the nontrivial correlation func-
tion g*” appear only in the factor in parenthegéd®e effects
of g** are represented by the replacemendéf by &%),

The specific form of the linear relation between the in-Note that the response function relevant to the evaluation of
duced and inducing perturbations may be obtained from thguasilinear relations such as Ed4) is the density-density
kinetic equation(3). The solution of this equation becomes response function in ane-component plasmaiewing the
simpler when transformed into a frame in which the effect offluctuations in the other component as the perturbing quan-

the radiation field on one of the components, says elimi-
nated[11,12, as will be done explicitly below. Let us then

tity.
In the presence of a uniform external fielgex

display first the expressions for the susceptibilities in the_ -

absence of an external field. Linearization of E3), assum-

ing a small perturbation around thermal equilibrium with P

momentum distributionf®(p), leads then in the classical
case to the relation

g,ind_ c},ind > 13>
K,w _Jfk,w (p)d p
:ng,indf aa ?QIZ’ f&fod d3ﬁ d3|2/
k,w gk—k’ k! &ﬁ R F-)* (271_)3
w-k-—
m
R aan d3p’ d3|2/
+n! | g Ve kK f , (15
nk,wf gk—k’ k’ &ﬁ . ﬁ (277_)3 ( )
o-k-—
m
where  here the replacement lz’-&fOC'/&ﬁD (1/h)

x[10a( g+ 1k7) ~ f0a(5- k)]
mechanical result.

Following Ref.[25] (see also Ref[28]) we define the
response function

gives the quantum-

o . aan d3"
XK @) =~ K f ———F (16)
ap > P
w — ._a
m
and a dynamic effective interaction
BT 1 B\ /2B Oa(ls 1o '
o (k,w)=—af Ve X (kK w) :
XOa(k’w) gk k' Tk X (2’7T)3
(17)

where x°(k, ») = y°%(k, k, ») (these susceptibilities are com-
plex functions, asv is understood to have a positive infini-

=E,coswet, one may transform to a rotated phase space
p*(F,t)=F+£%Ccoswgt and v — UYF,t)=v - wee?sin wgt,
whereE“:(q“/m“wg)Eo, which eliminates the field from Eq.
(3). In this “« rotated frame” the relatiotil8) holds. The
quantities evaluated in this frame will be denoted byfor
examplen*(r,t; «) is the density of thex component in the
a rotated frame. Any scalar quantig(r,t) solved in the
rotated frame and transformed to the laboratory frame is
a(r,t)=a(r+e“cos wgt,t; ). In k space the transformation
readsag(t) =ag(t; a)e= cos wot=g(t; a)E:]c:_mian(k-(;“)_ein“’Or,
where we have used the expansiof27] €7 cos?
=3 _i"J,(2€"? where J, is the Bessel function. Similar
expressions allow us to transform to and from theotated

frame. For example, for one of the density correlators we
obtain

1l—5md o~
viL (On_(1)

[P do - ay
—f_m ZTXV(k,w)V‘Z

) N 1, "
X f dt/e—lw(t—t )e|k.s(cos wpt—COS wot )Q”E(t’ : “)”-ﬁ(t? a)
00 . s d . 3 R
= 3 (kR SR VS - ),
m=—o —o &TT

(20)

wheres=¢7-¢*, the overbar denotes both ensemble averag-
ing and averaging over a period of the external figld;)
:fﬁ”’“’()(---)(wodt/Zw), and we have used the time-
translation invariance of the fluctuations in the thermal en-
semble, (n:(t"; a)n”(t; @) =(n’(0;a)n’{t-t';a)), and the

tesimal imaginary part representing the adiabatic switchingefinition

on; thusx®* is replaced by its complex conjugate upon re-

versal of the sign of Re; this property is shared b$*#, and
also by y* defined next With these definitions, the density-
density linear response relation reads

a,ind

— L ay Yy
N, =X (k,w)Vk N o (18)

with the density response function

S'(k,w) = f dt”e‘“"t"\—llms(o;a)ni;(t";a)} (21)

for the dynamic structure factgwhich is real and even in
).

Application of this approach to the averaged power of Eq.
(13), in the quasilinear approximatiqii4), leads to

066407-4



INVERSE BREMSSTRAHLUNG AND TEMPERATURE. PHYSICAL REVIEW E 69, 066407(2004

p®=Pa=pEa 4 gar_ yra (22 a andy interchanged, as is physically requirgidcan also be
obtained here by representing the derivative in
”(d—a/at)nj; by the factor +(w—mwg) —iwk-£*sin wpt].

The fact that this derivation deals with the various ener-
getic processes in the same manner allows one to rewrite the

where the direct reactive term vanishes upon averaging, a
the remaining terms are identified @§¢, the heating of the
a specie by the external radiatiop®?, the heating of thex
specie by thermal fluctuations in thespecie, ang?*, the

cooling of thea specie by transfer of energy to thespecie.  esult as
The power absorbed from the radiation field can be rewritten .
as pa:p a+<@a‘y_p'ya
@ BK oy oy . “ d
a ) . - [ Svwr S pkeor[ 82
E m* dsk Ay, ay Z 12 (277) K K m=—x —% 2
o= | Ve 2 [Inlk-8)]
a_a ™ M=o x{aEe(k,w) + 8 (k,») — a¥*(k,w)}, (27)
m* m’
“ dew . . where
Xf Z—mwo{lm[)(“(k, ) ]S"(k, @ = Mwg)
—o &TT
9
- R B oom® T® (@ — Mwp)
= Im[x”(k, ) ]S*(k,  — May), ay (ko) = 9 i q_y( Ta + T )
(23) g
b ing the relati - -
y using the refation X MaweS (K, ) S(K, & — Map) (28)
27l wg wg Jt .. . .
co t dTelk-scos one—Ik-sCOS wp(7t")
f 0 o OS] and
- ind H " m @
= 3 [Inlk-&)pemed’'——, (24) L
o0 .8 m“ - -
= wok - & a?(k,w) = % o= Moy——— | (K@) (K - May).
which follows from the Bessel property,(X)+J,_1(X) qa q_y
m* m

=(2n/x)J,(x) [27] [recall that interchanging and y in Eq.

(20) leads to a sign reversal . The real part of the sus- (29
ceptibility does not contribute here because of its symmetry

in frequency, and becaus]é(x) is symmetric inm, as well as  In these expressions, the fluctuation-dissipation theorem
in X. The power absorbed from the thermal fluctuations of the

v specie may similarly be rewritten as - T -
Sk, w) = = —Imy“(k,w) (30
Tw

dglz a a - ™"
- 2 3Vi27‘1,|27 2 [Im(k- 5)]2
(2m) me=—o has been usedsee, e.g., Ref[29]). The factors of T/ mw
q must be replaced by#/2m)cothiw/2T) in the quantum-
" — mechanical cas¢in the second term of Eq28) the fre-
% J w— mwoaL |m[X“(|Z, w)] quency variable has been shifted and the sigm oéversed
e Y The energy balance equati@®v) [with relations(28) and
m* m’ is the main result of the present work. It expresses bot
(29)]is th i It of th k.| both
pF¢, the energy transferred from radiation to the electrons,
XS”V(IZ,w—mwO)d—w, (25) and p®-p', the energy transferred between the electrons
2 and ions, in terms of the overlap of electron and ion spectra,
S(k,w) and S(k,w), and the effective interactiom’€i(k)
which accounts for electron-ion correlations. The reduction

of these expressions to well-known results, in various limits,

27l wg - -
o~ L zac ik-5c0s wgt o-ik-£cos wgt(t—t") : ) A 4
fo o (i +iwek - £°sin wot)e € is presented in the following two sections.

Y=

which is obtained using

= > [Jm(lz.é’)]Zeimwot"(iw_imwok_:s ) (26) IV. INVERSE BREMSSTRAHLUNG
m=—x k " 5
The power absorbed by the electrons in a plasma from the

(the factor in parentheses represents the time derivative ifadiation field, i.e., the power of the inverse bremsstrahlung
(—(?/at)ng"nd). The last ternp® is identical to Eq(25) with  process, is given by Eq28):
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e
He
e
m

&k
(2m)® Vi

Ee—

ei dw
o Ve S 0,6 F [ L

}. (31)

The spectrum of ion fluctuationsS(k, w—mwy), drops to
zero very rapidly as the phase velociy—maw|/k of the
excitation exceeds the ion thermal velocity'/m’, or as the
frequency|w—maw,| exceeds the ion plasma frequen«a)gI

ml
TO 7T(w M)

X §(k w)S(k W= mwo){ T

=V4mn%e?/m’. In most cases, for the electrons, this is a very
low frequency range, i.e., the range which contnbutes to th

w integration is characterized ty—mw| <kyTe/me. Using
this feature one may expang® around the frequencww
=Mwg in the w integral. The result is

}dw

...

T 77( ® — Mwg)

J_ mwOSe(k w)S(k - mwo){ T

TWw 7T(w M)
TI

= mwoz ( Se(k w){
X f’” do(w - mwo)"S(E,w - Mwg)

~ mzngﬂeSE(E, Mawo)nPS(K), (32)

where we have used the symmetry&‘;@lz,w) to cancel all
the odd terms in the Taylor expansion, neglected nke
ture factor[Eq. (7.67) in Ref. [29]]:

Sk = nio f S(k w)dw (33)

&
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V. RELAXATION IN THE ABSENCE OF RADIATION

The termp®- ' in the energy equatiof27) accounts for
the exchange of energy between electrons and ions. In the
absence of a radiation field, only the=0 term survives and
dsk do_ e ei

we are left with
_Va'\IrQ
(271')3J_OC 2 k Tk w{

For Coulomb interactions in the absence of correlations
(k) — V¢ =-4nZ&/k?, Eq. (35 (with the help of the
fluctuation-dissipation theoremreduces to the form of Eq.
(36) in Ref.[30], which was shown in Ref24] to be equiva-
lent to the well-known results developed by Landag] and
Spitzer[23].

o —}S(k w)Se(k w).

(35

VI. THE EFFECT OF CORRELATIONS

The above comparisons of result34) and (35) to the
literature exhibit the influence of the effective interaction
Vei(k) on energetic processes in the present approach, be-
yond the effect of the dynamic effective interactidfi(k, w)
which appears in the response functions. A numerical esti-
mate of We(k) requires knowledge of the electron-ion pair
distribution functiong®(r) [which in the STLS approach is
obtained self-consistently from Ed19), the fluctuation-
dissipation theoreni30), and the definition ofy in terms of
S]. While findingg®(r) accurately is a formidable task which
is well beyond the scope of the present work, a rough esti-

Ghate of the effects may be obtained by using the linear for-

mula[31,32

0°(K) = == 0PXRXS (K) + (). (36)

’Oe (0]

Combining these results, one finds that in the lowest signifi-

cant order inmé/m we have

Ee— _

K\ eigei s 1 (= %
A 2 3k £ Fmogmx (K moo)]
77) m=—x

nios (k).
(34)

In the absence of correlations and for Coulomb interaction

we haveg? . = £(k-K'), ¥F'—VE=-(472e/K?), S(K)— 1,

XK, w) —

In the classical-mechanics case, E2f}) then coincides with
the results of Ref[13] for the energy transmitted from the
radiation to the electrongsee Eq(19) and(20) therein.

In the above equatiog®(k) = x*(k, w=0) (which is rea), the
static ion structure factoB(k) is taken from the solution of
the Percus-Yevick equation for a fluid of hard spheres, and
the pseudopotential*® is taken as an empty core potential of
radius R, vP3=(-47wZ€/k’)codkR,). The static structure
factor Sé(k) for Al, Bi, and Mg at normal density and®
=20 eV, taking the density parameter empty core radius

R. from the literature, using a packing fraction p¥0.46 are
shown in Fig. 1.[For comparison and analysis 8Ff(k) in

These cases see Ref81,32.]

The correction factor which replaces the coupling coeffi-
cient (vP9? by vPS¥'® is shown in Fig. 2. From this figure it
is clear that the correlation effect enhances the coupling co-
efficient, in the rang&< 1.5/8mT¢/%2, which is the relevant
range for the integral in Eq35) which evaluates the rate of
temperature relaxation. This is an indication that in moder-
ately coupled plasmas, the electron-ion correlation enhances
the rate of temperature relaxation. Similarly, the rate of ab-
sorption via the inverse bremsstrahlung process is enhanced.

066407-6



INVERSE BREMSSTRAHLUNG AND TEMPERATURE. PHYSICAL REVIEW E 69, 066407(2004)

0.12 4
0.10 e Al
0.08] 3.0
0.06 2.8
0.04 2.6
0.02] 2.4
0.00 2.2
-0.02-] 5 2.0
% -0.04] S 1.8
-0_05_. “E 1.6-_
-0.08 - _g 1.4-_
-0.10 3 1.2
-0.12 5 1.0
-0.14 - ¥ O 0.8
-0.16 0.6
o 1 3 3 4 5 & 04
0.2
ke 4 0o 1 2 3 4 5 6
FIG. 1. (Color onling S¢ at T,=20 eV and normal density, for k/k,
Bi (Z=5,=2.25R.=1.1%,), Al (Z=3,1:=2.07R.=1.53),
Mg(Z=2,r,=2.66 R.=1.31a). FIG. 2. (Color onling Correction factor¥ie[k?/4nZe?
cogkR,)] at T,=20eV and normal density, for B(Z=5,rg
=2.66 R,=1.31ay).

The main result of the present work is in the energy bal- i ) .
ance equatio27) [with relations(28) and(29). In this equa- radiation field on the _electron—lon relaxatl_on rate. _
tion the energy transferred from the radiation to the elec- The numerical estimates of the effective pair interaction

trons, oE¢, and the energy transferred between the eIectronErese”ted in Sec. VI indicates that the electron-ion correla-
and i70ns’ggei_pie are written in terms of the overlap of tion has an enhancing effect on the rate of temperature relax-

electron and ion spectra and the effective interactits, ation, as well as on the inverse bremsstrahlung process. It

which accounts for electron-ion correlations. This correlationShOUId be noticed, however, that the quasilinear approxima-

as well as electron-electron and ion-ion correlations are act-ion used by ugEgs.(14), (18), and(19)] excludes the pos-

counted for also by the dynamic effective interactidy. sibility of coupled modes. These modes were claimed in Ref.

) - [1] to serve as a bottleneck for the electron-ion energy trans-
(17)] which affects the response functiongk, ) and the  for and to reduce the rate by an order of magnitude or more,
dynamic structure factorsS(k,w) (via the fluctuation- for strongly coupled plasmaslensities of liquefied metals
dissipation theoremEven in the absence of correlations, thelt would thus be of much interest to examine further ap-
present unified derivation gives rise to interesting resultsproaches beyond the quasilinear approximation and the
e.g., the quantitative expression for the effect of an externabTLS ansatz.
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