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The balance equation for the energy in moderately coupled two-temperature plasmas, in the presence of an
external radiation field, is derived and analyzed. The analysis is based on the Singwi-Tosi-Land-Sjolander
closure assumption. The different terms in the derived equation are identified as the rate of collisional energy
absorption from the external field(inverse bremsstrahlung), and the rate of energy transfer between the elec-
trons and the ions in the presence of the radiation field(relaxation). It is shown how these terms, which have
a structurally similar appearance, reduce to known expressions for relaxation and inverse bremsstrahlung in the
appropriate limits. It is found that, relative to the known expressions, electron-ion correlation tends to enhance
the rates of re1axation and of the inverse bremsstrahlung process.
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I. INTRODUCTION

The theoretical framework for the analysis of strongly
coupled plasmas is not yet fully developed. In particular it is
not clear what is the minimum approximation scheme(be-
yond the random phase and Born approximations) which is
sufficient for the description of the effect of strong ion-ion
and electron-ion coupling on relaxation and transport pro-
cesses in the plasma, even without an external radiation field
[1,2]. Some understanding of this problem may be obtained
by considering mild cases where the ion-electron coupling is
not so strong.

When the typical relaxation times of electrons and ions
are much shorter than typical electron-ion relaxation times
[3], one may assume that each specie is close to thermal
equilibrium, with different temperatures for the electrons and
the ions. In this case, one may proceed along the line of the
Singwi-Tosi-Land-Sjolander(STLS) approach for one-[4]
and multiple-[5] component plasmas. This approach trun-
cates the Born-Bogoliubov-Green-Kirkwood-Yvon
(BBGKY) hierarchy of equations[6,7] for the multiple-
particle distribution functionsfsrW ,pW ,td, fsrW ,pW ,rW8 ,pW8 ,td , . . .
using the ansatzfsrW ,pW ,rW8 ,pW8 ,td= fsrW ,pW ,tdfsrW8 ,pW8 ,tdgsurW−rW8ud
(where g is the equilibrium pair distribution function) and
then expands the kinetic equation around uniform thermal
equilibrium f 0spWd. The result is that the linear response func-
tions are changed from the functions in the absence of cor-
relation [i.e., with fsrW ,pW ,rW8 ,pW8 ,td= fsrW ,pW ,tdfsrW8 ,pW8 ,td] by a
local field correction[8], which is a functional of the pair
distribution function gsurW−rW8ud. The fluctuation-dissipation
theorem supplies another relation between the response func-
tions and the pair correlation function, leading to a closed set
of equations for the self-consistent evaluation of the linear
response functions and the pair distribution function. This
approach was successful in a variety of applications, e.g., in
describing the dielectric function of the interacting electron
liquid and of a two-component electron-hole liquid, and in
getting excellent agreement of the ground state energy with
numerical experiments over the whole range of metallic den-
sities (see, for example, Ref.[9]).

In the present work we use the STLS approach to inves-
tigate the energy transfer processes in moderately coupled
plasmas, close to quasithermal equilibrium with different
temperatures for the electrons and the ions. The treatment
includes an oscillating electric field which represents a long-
wavelength radiation field. The balance equation for the ki-
netic energy is derived from the second velocity moment of
the lowest order equation in the quantum BBGKY hierarchy
of equations. The derived equation includes a term which is
identified as the rate of collisional energy absorption from
the external field(inverse bremsstrahlung), and two addi-
tional terms which are identified as the rate of energy transfer
between the electrons and ions with or without the radiation
field. This is different from existing works(with weak or
strong coupling) which specialize either to the inverse
bremsstrahlung process[10–21] (by considering, right from
the beginning, only the case of infinite ion-to-electron mass
ratio) or to temperature relaxation[1,22–24] (by considering
systems without an external field). In the present derivation,
it is found that both inverse bremsstrahlung and relaxation
rates may be written as overlap integrals of the electron and

ion spectra inkW ,v space. This corresponds to a second-order
perturbation expansion in the electron-ion interaction poten-
tial, however with the interaction “dressed” by the local field
correction.

It is found that, in this scheme, the correlation induces
two types of corrections in the formulas for the rates of en-
ergy transfer and inverse bremsstrahlung: the electron-
electron and ion-ion dynamic local field correction which
dresses the electron’s and ion’s response functions[4,5], and
a static local field correction which dresses the electron-ion
coupling potential.

The standard formulas for the process of temperature re-
laxation [22,23] (without a radiation field) and collisional
absorption[11,10] from the radiation field, as well as some
more recent results[1,16,17,21,24] are obtained by taking
the proper limits and utilizing the properties of electron and
ion spectra to perform thev integration.

The plan of the paper is as follows: In Sec. II the basic
equations are presented and the balance equation for the ki-

PHYSICAL REVIEW E 69, 066407(2004)

1539-3755/2004/69(6)/066407(8)/$22.50 ©2004 The American Physical Society69 066407-1



netic energy is derived. In Sec. III, we use the quasilinear
approximation to write the rate of energy transfer from ra-
diation to the electrons and ions and between the electrons
and ions, in the balance equation, in terms of overlap inte-

grals of the electron and ion spectra inkW ,v space. The term
responsible for the inverse bremsstrahlung process is ana-
lyzed in Sec. IV, and Sec. V analyzes the terms responsible
for energy transfer between the electrons and ions in the
absence of external radiation. An evaluation of the correction
factor due to electron-ion correlations is given in Sec. VI,
and Sec. VII is devoted to a summary and discussion.

II. THE KINETIC AND TRANSPORT EQUATIONS

In this section, we will develop an expression for the
powerPa absorbed by the electrons or the ions in a plasma,
by applying the STLS closure assumption to the basic equa-
tions of motion. The expression obtained will be bilinear in
the particle densities, and will thus allow the introduction of
density correlators in the following section. An external os-
cillating electric field driving the plasma will be included,
representing an applied laser. Using Wigner functions will
allow us to present quantum-mechanical results and classical
results simultaneously.

The N-body Schrödinger equation for a plasma of inter-
acting particles—Ne electrons andNi ions in a volume
V—may be transformed[6,7] to a hierarchy of equations for
the Wigner functionsFasrW ,pW ,td, FabsrW ,pW ,rW8 ,pW8 ,td , . . . where
a ,b denote either electrons or ions. It is convenient here to
modify the normalization of the Wigner functions used in
Ref. [6] by defining fasrW ,pW ,td=Nas2p "d−3FasrW ,pW ,td ,
fabsrW ,pW ,rW8 ,pW8 ,td=NaNbs2p "d−6FabsrW ,pW ,rW8 ,pW8 ,td , . . . Many
of the equations below are then unchanged in the classical
limit "→0 and can be understood as representing both the
quantum case[wherefasrW ,pW ,td are the Wigner functions] and
the classical case, withfasrW ,pW ,td denoting phase-space dis-
tribution functions. The expectation values of the particle
density, charge current, and kinetic energy at a pointrW and
time t are thus

nasrW,td = knal =E fasrW,pW ,tdd3pW ,

jWasrW,td =Kqana pW

maL = qaE pW

ma fasrW,pW ,tdd3pW ,

kasrW,td =Kna p2

2maL =E p2

2ma fasrW,pW ,tdd3pW . s1d

The time evolution ofjWasrW ,td ,kasrW ,td is affected by correla-
tions. In order to examine this effect, we shall apply one of
the simplest known approaches which goes beyond the Har-
tree (random phase) approximation: the hierarchy of equa-
tions which connects the single-particle distributions to the
multiparticle distributions is truncated by assuming[4,5,25]

fabsrW,pW ,rW8,pW8,td = fasrW,pW ,tdfbsrW8,pW8,tdgabsrW − rW8d. s2d

Assumption(2) with the identification ofg with the pair
distribution function in the equilibrium state[4,25] reduces
the hierarchy of equations to a set of coupled kinetic equa-
tions for the single-particle Wigner functions[25]. In the
classical case one obtains the kinetic equation

]

] t
fasrW,pW ,td +

pW

ma ·
]

] rW
fasrW,pW ,td +

]

] pW
fasrW,pW ,td ·maaWa = 0,

s3d

where the accelerations are given by

maaWa = −
]

] rW
qafextsrW,tWd

−E FnasrW8,tdgaasrW − rW8d
]

] rW
VaasrW − rW8d

+ ngsrW8,tdgagsrW − rW8d
]

] rW
VagsrW − rW8dGd3rW8, s4d

with a=e, i andg= i, e, respectively, andVabsrW−rW8d denot-
ing the different interparticle interaction potentials(b is
equal to eithera or g). The quantum-mechanical form of the
kinetic equation is obtained by applying the Fourier trans-
form

]

] pW
fasrW,pW ,td =E eijW·shW−pWds− ijWdfasrW,hW ,td

d3jWd3hW

s2pd3 s5d

and making the replacements

jW ·
]

] rW
fextsrW,td ⇒

1

"
FfextSrW +

1

2
"jW,tD − fextSrW −

1

2
"jW,tDG ,

jW ·
]

] rW
VabsrW − rW8d ⇒

1

"
FVabSrW +

1

2
"jW − rW8DG s6d

F − VabSrW −
1

2
"jW − rW8DG

in Eqs.(3) and(4), where it is clear that taking"→0 repro-
duces the classical results.

The above approach of displaying the more transparent
classical results, and then stating whenever necessary the re-
placement needed in order to generate the quantum-
mechanical results, will be used throughout the rest of this
paper.

The Hartree approximation is recovered here by ignoring
correlations(i.e., taking gab=1), which gives the Vlasov
equation for a two-component plasma[26] (the extension to
a many-component plasma, containing several species of
ions, is obvious). The present notation allows us to consider
both Coulomb interactions withVabsrW−rW8d=qaqb / urW−rW8u,
and partially ionized plasmas with electron-ion interactions
represented by pseudopotentials and ion-ion interactions af-
fected by the repulsive cores.
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Taking the first and second velocity moments of Eq.(3),
and averaging over the volumeV one gets the following
equations for the momentum and energy:

]

] t
JWastd = qaE pW

ma

]

] t
fasrW,pW ,tdd3pW

d3rW

V

=
qa

ma E EW extsrW,tdqanasrW,td
d3rW

V

+
qa

ma E EW eff,asrW,tdqanasrW,td
d3rW

V
s7d

and

]

] t
Kastd =

]

] t
SE p2

2ma fasrW,pW ,tdd3pW
d3rW

V
D

=E fEW extsrW,td + EW eff,asrW,tdg · jWasrW,td
d3rW

V
. s8d

HereEW eff,asrW ,td is the effective field,

EW eff,asrW,td = − ¹W feff,asrW,td, s9d

where the effective potentialfeff,asrW ,td can be written as

qafeff,asrW,td =E hCaasrW − rW8dnasrW8,td

+ CagsrW − rW8dngsrW8,tdjd3rW8 s10d

in terms of an effective pair interactionCabsrWd defined by

¹W CabsrWd = gabsrWd¹W VabsrWd. s11d

Equations (7) and (8) apply both to the classical and
quantum-mechanical cases. Formally, the macroscopic equa-
tion (7) looks like Newton’s equation for the fluid velocity

UW a, i.e., s] /]tdUW asrW ,td=sqa /madEW eff,asrW ,td, and Eq.(8) tells
us that the change in the energy of thea fluid equals to the
work performed by the external field and the effective field
on thea specie(i.e., the ohmic dissipation).

It is convenient at this point to specialize to the case of a
uniform monochromatic external field, representing a long-

wavelength laser: EW extsrW ,td=EW 0cosv0t (with adiabatic
switching on fromt→−`). The integrals involving the ex-
ternal field in Eqs.(7) and(8) can then be preformed, yield-

ing Na andJWa, respectively. Substituting for the latter, trans-

forming to kW space (with fkW =ee−ikW·rWfsrWdd3rW and fsrWd
=eeikW·rWfkWd

3kW / s2pd3, and using continuity[i.e., the lowest ve-
locity moment of the kinetic equation(3), qas] /]tdn

kW
astd

+ ikW · jW
kW
astd=0] gives the rate of change of the kinetic energy

of the a specie as

]

] t
Kastd =

qa2

2v0m
a

Na

V
E0

2sins2v0td

+
qa

maEW 0cossv0td
1

V
E

−`

t

dtE d3kW

s2pd3

3s− ikWdC
kW
ag

n
kW
gstdn

−kW
a std

−
1

V
E d3kW

s2pd3C
kW
aa

n
kW
astd

]

] t
n

−kW
a std

−
1

V
E d3kW

s2pd3C
kW
ag

n
kW
gstd

]

] t
n

−kW
a std s12d

(the effective pair potential is here C
kW
ab

=skW /k2deg
k−kW8

ab
kW8VkW8

ab
d3kW8 / s2pd3, and depends only on the

magnitudek ). The first term on the right-hand side is the
direct response of thea specie to the external field, the sec-
ond term represents absorption from the external field(i.e.,
the inverse bremsstrahlung process), the third term is the
change in potential energy of thea specie, and the last term
represents the transport of energy between thea specie and
the g specie(relaxation). Moving the potential energy term
to the right-hand side of the equation, using its symmetry one
finds that the rate of change of the total energy of thea
specie is

Pa =
]

] t
SKastd +

1

2V
E d3kW

s2pd3C
kW
aa

n
kW
astdn

−kW
a stdD

=
qa2

2v0m
a

Na

V
E0

2sins2v0td

+
qa

maEW 0cossv0td
1

V
E

−`

t

dtE d3kW

s2pd3s− ikWdC
kW
ag

n
kW
gstdn

−kW
a std

−
1

V
E d3kW

s2pd3C
kW
ag

n
kW
gstd

]

] t
n

−kW
a std. s13d

Note that this expression for the power, which is bilinear in
the densities, follows directly from the STLS closure ansatz.
No linearization approximation is needed.

III. THE QUASILINEAR APPROXIMATION FOR THE
ENERGY EQUATION

In the quasilinear approximation[26], one assumes that
the two components of the plasma, electrons, and ions can be
considered separately, with their effects on each other treated
as a small perturbation around their thermodynamic equilib-
rium states(Ref. [32] shows that for some purposes this is a
good approximation even at the relatively high densities of
liquid metals, provided that the electron-ion interaction is
represented by an appropriate pseudopotential). Using k¯l
to denote averaging over the thermodynamic ensemble, we
will thus approximate the bilinear correlators in Eq.(13) by
expressing them in terms of linear susceptibilities. For ex-
ample,
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kn
kW
astdn

−kW
g stdl = kn

kW
astdn

−kW
g,indstdl + kn

kW
a,indstdn

−kW
g stdl, s14d

where the induced perturbationn
kW
ind,astd and the inducing

perturbationn
kW
g

are linearly related to each other(at zeroth
order, the fluctuations of thea specie and theg specie are of
course uncorrelated).

The specific form of the linear relation between the in-
duced and inducing perturbations may be obtained from the
kinetic equation(3). The solution of this equation becomes
simpler when transformed into a frame in which the effect of
the radiation field on one of the components, saya, is elimi-
nated[11,12], as will be done explicitly below. Let us then
display first the expressions for the susceptibilities in the
absence of an external field. Linearization of Eq.(3), assum-
ing a small perturbation around thermal equilibrium with
momentum distributionf0aspWd, leads then in the classical
case to the relation

n
kW,v

a,ind
=E f

kW,v

a,indspWdd3pW

= n
kW,v

a,indE g
kW−kW8

aa
V

kW8

aa
kW81E ] f0a

] pW

d3pW

v − kW ·
pW

ma 2
d3kW8

s2pd3

+ n
kW,v

g E g
kW−kW8

ag
V

kW8

ag
kW81E ] f0a

] pW

d3pW

v − kW ·
pW

ma 2
d3kW8

s2pd3 , s15d

where here the replacement kW8 ·]f0a /]pW ⇒ s1/"d
3f f0aspW + 1

2"kW8d− f0aspW − 1
2"kW8dg gives the quantum-

mechanical result.
Following Ref. [25] (see also Ref.[28]) we define the

response function

x0askW,kW8,vd = − kW8E ] f0a

] pW

d3pW

v − kW ·
pW

ma

s16d

and a dynamic effective interaction

FabskW,vd =
1

x0askW,vd
E g

kW−kW8

ab
V

kW8

ab
x0askW,kW8,vd

d3kW8

s2pd3 ,

s17d

wherex0askW ,vd=x0askW ,kW ,vd (these susceptibilities are com-
plex functions, asv is understood to have a positive infini-
tesimal imaginary part representing the adiabatic switching
on; thusx0a is replaced by its complex conjugate upon re-
versal of the sign of Rev; this property is shared byFab, and
also byxa defined next). With these definitions, the density-
density linear response relation reads

n
kW,v

a,ind
= xaskW,vdV

kW
ag

n
kW,v

g s18d

with the density response function

xaskW,vd =SFagskW,vd

V
kW
ag D x0askW,vd

1 − FaaskW,vdx0askW,vd
, s19d

and so the corrections due to the nontrivial correlation func-
tion gag appear only in the factor in parentheses(the effects
of gaa are represented by the replacement ofVaa by Faa).
Note that the response function relevant to the evaluation of
quasilinear relations such as Eq.(14) is the density-density
response function in aone-component plasma, viewing the
fluctuations in the other component as the perturbing quan-
tity.

In the presence of a uniform external fieldEW ext

=EW 0cosv0t, one may transform to a rotated phase spacerW
→rWasrW ,td=rW+«Wacosv0t and vW →uWasrW ,td=vW −v0«Wasin v0t,

where«Wa=sqa /mav0
2dEW 0, which eliminates the field from Eq.

(3). In this “a rotated frame” the relation(18) holds. The
quantities evaluated in this frame will be denoted by;a. For
example,nasrW ,t ;ad is the density of thea component in the
a rotated frame. Any scalar quantityasrW ,td solved in the
rotated frame and transformed to the laboratory frame is

asrW ,td=asrW+«Wacosv0t ,t ;ad. In kW space the transformation

readsakWstd=akWst ;adeikW·«Wacos v0t=akWst ;adon=−`
` inJnskW ·«Wadeinv0t,

where we have used the expansion[27] eiz cos u

=on=−`
` inJnszdeinu where Jn is the Bessel function. Similar

expressions allow us to transform to and from theg rotated
frame. For example, for one of the density correlators we
obtain

1

V
n

kW
g,indstdn

−kW
a std

=E
−`

` dv

2p
xgskW,vdV

kW
ag

3 E dt8e−ivst−t8deikW·«Wscos v0t−cos v0t8d 1

V
n

kW
ast8;adn

−kW
a st;ad

= o
m=−`

`

fJmskW · «Wdg2E
−`

` dv

2p
xgskW,vdV

kW
ag

SaskW,v − mv0d,

s20d

where«W =«Wg−«Wa, the overbar denotes both ensemble averag-
ing and averaging over a period of the external field,s¯d
=e0

2p/v0k¯lsv0dt/2pd, and we have used the time-
translation invariance of the fluctuations in the thermal en-
semble,kn

kW
ast8 ;adn

−kW
a st ;adl=kn

kW
as0;adn

−kW
a st− t8 ;adl, and the

definition

SaskW,vd =E dt9e−ivt9 1

V
kn

kW
as0;adn

−kW
a st9;adl s21d

for the dynamic structure factor(which is real and even in
v).

Application of this approach to the averaged power of Eq.
(13), in the quasilinear approximation(14), leads to
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`a = Pa = `Ea + `ag − `ga, s22d

where the direct reactive term vanishes upon averaging, and
the remaining terms are identified as`Ea, the heating of the
a specie by the external radiation,`ag, the heating of thea
specie by thermal fluctuations in theg specie, and̀ ga, the
cooling of thea specie by transfer of energy to theg specie.
The power absorbed from the radiation field can be rewritten
as

`Ea = −

qa

ma

qa

ma −
qg

mg

E d3kW

s2pd3V
kW
ag

C
kW
ag o

m=−`

`

fJmskW · «Wdg2

3E
−`

` dv

2p
mv0hImfxaskW,vdgSgskW,v − mv0d

− ImfxgskW,vdgSaskW,v − mv0d,

s23d

by using the relation

E
0

2p/v0 v0dt

2p
cosv0tE

−`

t

dteikW·«Wcos v0te−ikW·«Wcos v0st−t9d

= o
m=−`

`

fJmskW · «Wdg2eimv0t9 m

v0kW · «W
, s24d

which follows from the Bessel propertyJn+1sxd+Jn−1sxd
=s2n/xdJnsxd [27] [recall that interchanginga and g in Eq.
(20) leads to a sign reversal in«W]. The real part of the sus-
ceptibility does not contribute here because of its symmetry
in frequency, and becauseJm

2 sxd is symmetric inm, as well as
in x. The power absorbed from the thermal fluctuations of the
g specie may similarly be rewritten as

`ag = −E d3kW

s2pd3V
kW
ag

C
kW
ag o

m=−`

`

fJmskW · «Wdg2

3 E
−`

` 1v − mv0

qa

ma

qa

ma −
qg

mg
2ImfxaskW,vdg

3SgskW,v − mv0d
dv

2p
, s25d

which is obtained using

E
0

2p/v0 v0dt

2p
siv + iv0kW · «Wasin v0tdeikW·«Wcos v0te−ikW·«Wcos v0tst−t9d

= o
m=−`

`

fJmskW · «Wdg2eimv0t9Siv − imv0
kW · «Wa

kW · «W
D s26d

(the factor in parentheses represents the time derivative in
s−] /]tdn

kW
a,ind

). The last term̀ ga is identical to Eq.(25) with

a andg interchanged, as is physically required[it can also be
obtained here by representing the derivative in

s−] /]tdn
−kW
a

by the factor −isv−mv0d− iv0kW ·«Wasin v0t].
The fact that this derivation deals with the various ener-

getic processes in the same manner allows one to rewrite the
result as

`a = `Ea + `ag − `ga

=E d3kW

s2pd3V
kW
ag

C
kW
ag o

m=−`

`

fJmskW · «Wdg2E
−`

` dv

2p

3ham
Eask,vd + am

agsk,vd − am
gask,vdj, s27d

where

am
Eask,vd =

qa

ma

qa

ma −
qg

mg

Spv

Ta +
psv − mv0d

Tg D
3mv0S

askW,vdSgskW,v − mv0d s28d

and

am
agsk,vd =

pv

Ta 1v − mv0

qa

ma

qa

ma −
qg

mg
2SaskW,vdSgskW,v − mv0d.

s29d

In these expressions, the fluctuation-dissipation theorem

SaskW,vd = −
Ta

pv
ImxaskW,vd s30d

has been used(see, e.g., Ref.[29]). The factors ofT/pv
must be replaced bys" /2pdcoths"v /2Td in the quantum-
mechanical case[in the second term of Eq.(28) the fre-
quency variable has been shifted and the sign ofm reversed].

The energy balance equation(27) [with relations(28) and
(29)] is the main result of the present work. It expresses both
`Ee, the energy transferred from radiation to the electrons,
and `ei−`ie, the energy transferred between the electrons
and ions, in terms of the overlap of electron and ion spectra,

SeskW ,vd and SiskW ,vd, and the effective interactionCeiskWd
which accounts for electron-ion correlations. The reduction
of these expressions to well-known results, in various limits,
is presented in the following two sections.

IV. INVERSE BREMSSTRAHLUNG

The power absorbed by the electrons in a plasma from the
radiation field, i.e., the power of the inverse bremsstrahlung
process, is given by Eq.(28):
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`Ee=

e

me

e

me −
Ze

mi

E d3kW

s2pd3V
kW
ei

C
kW
ei o

m=−`

`

fJmskW · «Wdg2E
−`

` dv

2p
mv0

3 SeskW,vdSiskW,v − mv0dHpv

Te +
psv − mv0d

Ti J . s31d

The spectrum of ion fluctuations,SiskW ,v−mv0d, drops to
zero very rapidly as the phase velocityuv−mv0u /k of the
excitation exceeds the ion thermal velocityÎTi /mi, or as the
frequencyuv−mv0u exceeds the ion plasma frequencyvpi

=Î4pn0ie2/mi. In most cases, for the electrons, this is a very
low frequency range, i.e., the range which contributes to the
v integration is characterized byuv−mv0u!kÎTe/me. Using
this feature one may expandxe around the frequencyv
=mv0 in the v integral. The result is

E
−`

`

mv0S
eskW,vdSiskW,v − mv0dHpv

Te +
psv − mv0d

Ti Jdv

= mv0o
n=0

`
1

n!
S ]n

] vnSeskW,vdHpv

Te +
psv − mv0d

Ti JD
v=mv0

3E
−`

`

dvsv − mv0dnSiskW,v − mv0d

. m2v0
2 p

TeSeskW,mv0dn0iSiskWd, s32d

where we have used the symmetry ofSiskW ,vd to cancel all
the odd terms in the Taylor expansion, neglected then=2
and higher terms, and used the definition of the static struc-
ture factor[Eq. (7.67) in Ref. [29]]:

Siskd =
1

n0iE SiskW,vddv. s33d

Combining these results, one finds that in the lowest signifi-
cant order inme/mi we have

`Ee= −E d3kW

s2pd3V
kW
ei

C
kW
ei o

m=−`

`

fJmskW · «Wedg2mv0ImfxeskW,mv0dg

ni0SiskWd.

s34d

In the absence of correlations and for Coulomb interactions

we haveg
kW−kW8

ei
=d3skW −kW8d, C

kW
ei→V

kW
ei

=−s4pZe2/k2d, SiskWd→1,

xeskW,vd → x0esk,vd

1 −
4pZe2

k2 x0eskW,vd
.

In the classical-mechanics case, Eq.(34) then coincides with
the results of Ref.[13] for the energy transmitted from the
radiation to the electrons.[see Eq.(19) and (20) therein].

V. RELAXATION IN THE ABSENCE OF RADIATION

The term`ei−`ie in the energy equation(27) accounts for
the exchange of energy between electrons and ions. In the
absence of a radiation field, only them=0 term survives and
we are left with

`e =E d3kW

s2pd3E
−`

` dv

2p
V

kW
ei

C
kW
ei

vHpv

Te −
pv

Ti JSiskW,vdSeskW,vd.

s35d

For Coulomb interactions in the absence of correlations

CeiskWd→V
kW
ei

=−4pZe2/k2, Eq. (35) (with the help of the
fluctuation-dissipation theorem) reduces to the form of Eq.
(36) in Ref. [30], which was shown in Ref.[24] to be equiva-
lent to the well-known results developed by Landau[22] and
Spitzer[23].

VI. THE EFFECT OF CORRELATIONS

The above comparisons of results(34) and (35) to the
literature exhibit the influence of the effective interaction
Ceiskd on energetic processes in the present approach, be-
yond the effect of the dynamic effective interactionFeisk,vd
which appears in the response functions. A numerical esti-
mate ofCeiskd requires knowledge of the electron-ion pair
distribution functiongeisrd [which in the STLS approach is
obtained self-consistently from Eq.(19), the fluctuation-
dissipation theorem(30), and the definition ofg in terms of
S]. While findinggeisrd accurately is a formidable task which
is well beyond the scope of the present work, a rough esti-
mate of the effects may be obtained by using the linear for-
mula [31,32]

geiskd =
1

În0en0i
vpsskdxeskdSiskd + d3skWd. s36d

In the above equationxeskd=xesk,v=0d (which is real), the
static ion structure factorSiskd is taken from the solution of
the Percus-Yevick equation for a fluid of hard spheres, and
the pseudopotentialvps is taken as an empty core potential of
radius Rc, vps=s−4pZe2/k2dcosskRcd. The static structure
factor Sieskd for Al, Bi, and Mg at normal density andTe

=20 eV, taking the density parameterrs, empty core radius
Rc from the literature, using a packing fraction ofh=0.46 are
shown in Fig. 1.[For comparison and analysis ofSieskd in
these cases see Refs.[31,32].]

The correction factor which replaces the coupling coeffi-
cient svpsd2 by vpsCie is shown in Fig. 2. From this figure it
is clear that the correlation effect enhances the coupling co-
efficient, in the rangek,1.5Î8mTe/"2, which is the relevant
range for the integral in Eq.(35) which evaluates the rate of
temperature relaxation. This is an indication that in moder-
ately coupled plasmas, the electron-ion correlation enhances
the rate of temperature relaxation. Similarly, the rate of ab-
sorption via the inverse bremsstrahlung process is enhanced.
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VII. SUMMARY AND DISCUSSION

The main result of the present work is in the energy bal-
ance equation(27) [with relations(28) and(29). In this equa-
tion the energy transferred from the radiation to the elec-
trons,`Ee, and the energy transferred between the electrons
and ions,`ei−`ie, are written in terms of the overlap of
electron and ion spectra and the effective interaction,Cie,
which accounts for electron-ion correlations. This correlation
as well as electron-electron and ion-ion correlations are ac-
counted for also by the dynamic effective interaction[Eq.

(17)] which affects the response functionsxskW ,vd and the

dynamic structure factorsSskW ,vd (via the fluctuation-
dissipation theorem). Even in the absence of correlations, the
present unified derivation gives rise to interesting results,
e.g., the quantitative expression for the effect of an external

radiation field on the electron-ion relaxation rate.
The numerical estimates of the effective pair interaction

presented in Sec. VI indicates that the electron-ion correla-
tion has an enhancing effect on the rate of temperature relax-
ation, as well as on the inverse bremsstrahlung process. It
should be noticed, however, that the quasilinear approxima-
tion used by us[Eqs.(14), (18), and(19)] excludes the pos-
sibility of coupled modes. These modes were claimed in Ref.
[1] to serve as a bottleneck for the electron-ion energy trans-
fer, and to reduce the rate by an order of magnitude or more,
for strongly coupled plasmas(densities of liquefied metals).
It would thus be of much interest to examine further ap-
proaches beyond the quasilinear approximation and the
STLS ansatz.
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